Latent Semantic Indexing

نویسندگان

  • Lillian Lee
  • Vladimir Barash
  • Stephen Purpura
  • Shaomei Wu
چکیده

In the previous lecture, we discussed the Singular Value Decomposition (SVD) of the term-document matrix D ∈ <m× n where n is the number of documents in the corpus and m is the number of terms in the vocabulary. With the help of SVD (which is unique up to sign if the singular values are distinct), we can decompose an m×n term-document matrix into three special smaller matrices. The result is frequently abbreviated D = UΣV T where:

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Random Indexing to improve Singular Value Decomposition for Latent Semantic Analysis

We present results from using Random Indexing for Latent Semantic Analysis to handle Singular Value Decomposition tractability issues. We compare Latent Semantic Analysis, Random Indexing and Latent Semantic Analysis on Random Indexing reduced matrices. In this study we use a corpus comprising 1003 documents from the MEDLINE-corpus. Our results show that Latent Semantic Analysis on Random Index...

متن کامل

Latent Semantic Indexing Based on Factor Analysis

The main purpose of this paper is to propose a novel latent semantic indexing (LSI), statistical approach to simultaneously mapping documents and terms into a latent semantic space. This approach can index documents more effectively than the vector space model (VSM). Latent semantic indexing (LSI), which is based on singular value decomposition (SVD), and probabilistic latent semantic indexing ...

متن کامل

Using Latent Semantic Indexing for Data Deduplication

Using Latent Semantic Indexing for Data Deduplication

متن کامل

Latent Semantic Indexing for Patent Documents

Since the huge database of patent documents is continuously increasing, the issue of classifying, updating and retrieving patent documents turned into an acute necessity. Therefore, we investigate the efficiency of applying Latent Semantic Indexing, an automatic indexing method of information retrieval, to some classes of patent documents from the United States Patent Classification System. We ...

متن کامل

Probabilistic Latent Semantic Indexing Proceedings of the Twenty-Second Annual International SIGIR Conference on Research and Development in Information Retrieval

Probabilistic Latent Semantic Indexing is a novel approach to automated document indexing which is based on a statistical latent class model for factor analysis of count data. Fitted from a training corpus of text documents by a generalization of the Expectation Maximization algorithm, the utilized model is able to deal with domain{speci c synonymy as well as with polysemous words. In contrast ...

متن کامل

Comparison of Information Retrieval Techniques: Latent Semantic Indexing and Concept Indexing

The task of information retrieval is to extract relevant documents for a certain query from the collection of documents. As large sets of documents are now increasingly common, there is a growing need for fast and efficient information retrieval algorithms. The algorithms we are dealing with are embedded in the vector space model. In this paper we compare two information retrieval techniques: l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007